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NONSTATIONARY CRITICAL LAYER AND NONLINEAR INSTABILITY 

IN A PLANAR POISEUILLE FLOW 

V. P. Reutov UDC 532.526, 530.182 

One of the promising directions in the nonlinear instability theory of shear flows is 
related to the study of critical layers (CL) [1-6]. Stationary waves with a viscous non- 
linear CL have been studied in most detail [2, 3]. Analysis of nonstationary processes of 
practical interest was carried out for significant simplifying restrictions [4-6]. Thus, 
the nonlinear development of a wave in a channel and in a boundary layer was treated only in 
the limiting case of a strongly nonlinear CL near a stationary one [5]. To solve the problem 
of generation of turbulence in these flows, however, it is necessary to have some idea of the 
evolution of an initially linear wave. To study nonlinear instability in a planar Poiseuille 
flow we use below an approach similar to that of [6] for weather instability. We consider 
the development of long waves, represented on the (R, a) plane by points in the neighborhood 
of the upper branch of the neutral curve of the linear theory (a, wave number; and R, Reynolds 
number). For these waves it is possible to consider independently CL and viscous regions 
near the channel walls. Based on analyzing a nonstationary CL, we obtain equations describing 
the time evolution of a wave. The transition is traced from a linear viscous CL to a wave 
strongly nonlinear in the increasing amplitude. As is well known, stability problems with 
hydrodynamic flows are largely similar in that wave--particle interactions are generated in 
the plasma [7-9]. In the present paper the plasma-hydrodynamic analogy provides the wave 
energy in a Poiseuille flow, making it possible to interpret the results obtained from the 
point of view of general wave theoryt 

I. Starting Relations. We write down the equations for a viscous incompressible fluid 
in the form [I0] 

ouot-t-uOUOx-i-vaUoy = v A t ;  ( 1 . 1 )  

A~ = - -~ ,  ( 1 . 2 )  

where  A = 3 2 / 3 x  2 + 3 2 / 3 y 2 ;  r  i s  t h e  f l o w  v o r t i c i t y ,  ~ i s  t h e  s t r e a m  f u n c t i o n ,  i n t r o d u c e d  b y  
the relations u = 3~/3y, v = --~/~x; and v = I/R<<I is the reciprocal Reynolds number (all 
the variables are assumed to have been reduced to dimensionless form). Putting 

W,= S U (y) dy + r 

where U(y) > 0 is the velocity profile in a stationary Poiseuille flow between the walls 
y = 0 and y = 2, we obtain the following equation for ~: 

+ U  A ~ - - U "  a~aA, a ,  OA, 
---- Oz O~ - -  O--~j ' O z  + wA2~b (1.3)  

(the prime denotes differentiation with respect to y). Considering a wave periodic in x, we 
denote the complex amplitude of the Fourier harmonic by a variable with subscript n (n = I, 
2...): ~n(y, t) = <~ exp (--in~)> , etc., where ~ = x--ct, c is the phase velocity of the wave, 
and <...> is the average over a period. In the linear approximation the profile ~1(y) of a 
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neutral sinusoidal wave in an ideal fluid satisfies the Rayleigh equation [I0]. The vorticity 
profile in this wave can be represented in the form 

~ - - -  [ Y " / ( U  - -  c) 1~1. ( I .  4 )  

At  r e s o n a n c e  y = Yc ( U ( y c )  = c)  t h e  f u n c t i o n  ~01 i s  b o u n d e d  a n d ,  c o n s e q u e n t l y ,  t z  e n d u r e s  a 
j u m p .  The  s c a l e s  o f  t h e  n a r r o w  c r i t i c a l  l a y e r s  f o r m e d  n e a r  y = Yc w i t h  a c c o u n t  o f  w a v e  n o n -  
stationarity, viscosity, or nonlinearity can be represented, respectively, in the form [2-6] 

/ * ! , r . f \ l l a  
d, = 7c, o~Uc, dz = (v,,~zuc) " , dn = (B /U~)  1/~, 

1 

w h e r e  U e = U ' ( Y c ) ;  Yc = ] ~ # c I d ~ c / d t l ;  *c  "= * * ( Y c ,  t ) ;  a n d  B = 21~c t i s  the  f l u c t u a t i o n  a m p l i -  
t u d e  of the stream function at y = Yc We further consider flows with an isolated CL, whose 
scale d e = max(dt, dz, dn) is small in comparison with the distance to the channel walls. 
In this case the weak wave nonstationarity, viscosity, and nonlinearity can be taken into 
account within perturbation theory everywhere except in the CL region and the viscous regions 
near the channel walls. 

2. Nonstationary Critical Layer. Consider a CL in a wave with a slowly varying ampli- 
tude (Yc <<~c). Following [2, 3], we introduce the small parameter e determining the order 
of magnitude of the oscillation amplitude of ~. To simplify the analysis we assume that the 
process is characterized by the scales dt and dl, which coincide in order of magnitude with 
the CL nonlinearity scale d n % a~/2. Correspondingly, we introduce the normalized viscosity 
v = v/E 3/2 ~ I and the slow time T = s~/ft. An external solution of (1.3) is constructed in 
the form of a series in powers of the small parameter c ~/2. 

(0~ + ~. c. + ~a,,~(~) -~ . . . .  ( 2 . 1 )  , =  + 
? t~ I  

w h e r e  ~ , , -  ~ ( n a ,  c; g), ~b~ = % ( n a ,  c; g) a r e  T o l l m i e n  f u n c t i o n s  [3 6] A~(~)(T) an d  B ( ~  a r e  
' ' _ ll• 

complex coefficients, the subscripts (• refer to values in the regions y > Yc and y < Yc, 
respectively, and c.c. denotes the complex conjugate expression. Substituting (2oi) into 
(1.3), we obtain for the amplitudes @(~) equations of the form 

n 

o' , r  ( ~ U" / nfa2 q~z) F$~), ( 2 . 2 )  
ey'  q-  g-7-~- ~7 = 

where F(~) are expressed in terms of the series (2.1), whose number is less than I; in par- 
ticular, 

F(1) U" ( dA(f_) dB(~ ) 
i ~  ~ _ ~)2 \ - -gT-  ~a,, ~ '~+ 

- n  , - - 7 ~  ~p~n . ( 2 . 3 )  

The solution of (2.2) is written in the form 
Y Y 

(~) are complex coefficients Consider the behavior of the solution (2.1) where An(~) and B n 

near resonance points. Keeping in mind the structure of the Tollmien function for ~ = y -- 
Yc § 0, it is seen that the integrals in (2.4) can be represented as series expansions in 
powers of ~] and In I~I. it is agreed to choose the integration constants so that these ex- 
pansions contain no constants. We then obtain for ~(~) 

n 

dB (o) 
n J- I x~)  _(,) ~(,) ... t _ . a ~  ( ln  [.q [ + 1) + 0 (~1 i n ,  ~ t). ( 2 . 5 )  = Y r l n ! ( ~ a l  - ~  I J n •  -N" i,0'.1% 

Following the common scheme of matched asymptotic expansions, we transform in the external 
solution for n + 0 to the CL variable Y = ~/~I/=. As a result we obtain for the harmonic 
amplitudes of the stream function the following representation for Y + • 

...... ] [" 
n(o) ea/~ln 1- U e B ( ~  t [" c dB(~ U c B(O) ~ = ED~.-- -j-- a ' : l  "-7" ~l-- ~ -  nj I g3/2 

/' (o) ] 
, (o) ~ , ~ ( ~  ~ ~ d B ~ . ( l n l Y l + ~ ) + O ( l / y )  + . .  XY I n [ Y l - t - A n k ] "  ~ L 'n :~  ~i f o : n ( . / e  d'r " '  

t l  t~ 

where U c = U (Yc). To find the quantity O(I/Y) appearing with s a/2 in (2.6) it is necessary 
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to consider ~(~) for ~ ~2. The outer expansion of the mean of the total stream function 
acquires the form 

<~> = e~/~cY + sl-~-z U~Y~ ~- e~"~ [ +  Lr~)'~ ~-O (t/Y)] ~ . . . .  (2. 7) 

In the CL region we transform to the reference system of the neutral wave and put ~ = ' ~/~ 
--U c + a . The solution is sought in the form 

W = e U % Y - t - e W o ) @ e ~ / ~ l n  e~/~(~)-~ e~/'~(~)@... (2 .8 )  

De t e rmin ing  ~ ( ~ ) ,  ~(2) and ma tch ing  e x p a n s i o n s  ( 2 . 7 ) ,  ( 2 . 8 ) ,  and (2 .6 )  to  o r d e r s  e and a a/a  
i n s  ~/~ f o r  Y § • we o b t a i n  

B(O) B(O) B~), 
c o  - 

~ O ) =  I U;y~ - ~ 2t/e(B~)ein~g) ' 1g(~ ) U:B(o)y  t U; dB(n ~ (2 .9a )  

0 2 W ( 3 ) / O Y 2  = - -  ~2" ( 2 . 9 b )  

The following equation follows from (I.I) for the vorticity after time t ~ I/~ ~/2 

oa - s u ' v  ~ 2 0z - - v ~ - ~ - -  r + 2  Re[inaB~)ei~g]~.  (2.10)  

The evolution of vorticity occurs in the velocity field, determined by the stream function 
( 2 . 9 a ) .  The l o n g i t u d i n a l  component o f  the  v e l o c i t y  f i e l d  i s  g i v e n  by the  p r i m a r y  f low nea r  
resonance points, while the transverse one is determined by the external inviscid solution 
for y § Yc. Using (2.6), the jumps A(~ -- A(~ B(I) -- B(~) can be expressed in terms of the 

n+ n -  n+ n-  
v a l u e s  o f  ~(3) and 3 ~ ( a ) / 3 y  f o r  Y § _+~. Taking then  i n t o  a c c o u n t  ( 2 . 9 b ) ,  we o b t a i n  

n n 

T 

A(O) A(o) S ~ + - - u - - - - - -  lim Q~dY; 
T-coo  - - T  

T 

v; B(ofi 
dY .  

(2 .11a )  

(2 .11b)  

We next multiply (2.10) by exp (--im~), average the equation obtained over a wave period, and 
integrate over Y from-~o to +~. Using (2.6), (2.7), (2.11b) is transformed to the form 

B(1)  _ B ( , )  t 0 
n+ n-  = . ' o~ . ~ndY.  (2 .12)  

tn(zU c --'~o 

Unl ike  the  o u t e r  e x p a n s i o n s  f o r  the  s t a t i o n a r y  p rob lem,  c o n s t r u c t e d  i n  [3 ] ,  Eqs.  ( 2 . 6 ) ,  
(2 .7 )  c o n t a i n  d e r i v a t i v e s  of  the  a m p l i t u d e  w i t h  r e s p e c t  to  t ime and i n c l u d e  the  p r e s e n c e  o f  
m u l t i p l e  h a r m o n i c s .  We s t r e s s  t h a t  (2 .1 )  does no t  c o n t a i n  terms ~ ~ /z ,  which  i n  the  s t a -  
t i o n a r y  t h e o r y  d e s c r i b e  t he  d e f o r m a t i o n  of  the  p r i m a r y  f low,  g e n e r a t i n g  a jump in  the  mean 
v o r t i c i t y  upon t r a n s i t i o n  t h rough  the  CL (see  r e l a t i o n s  ( 2 . 3 ) ,  (2 .4)  i n  [ 3 ] ) .  To e x p l a i n  
the  v a r i a t i o n  o f  the  mean v o r t i c i t y  i n  a n o n s t a t i o n a r y  CL, we t a k e  i n t o  a c c o u n t  t h a t  a s o l u -  

, = U ' Y  t i o n  o f  (2 .10)  which f o r  Y + _+~ t r a n s f o r m s  to  a f low w i t h  <~> - -  c - { -HI(T) ,  can be con-  
s t r u e t e d  in  the  form 

~K~ (~, (2.13) 

where K l i s  a p e r i o d i c  f u n c t i o n  o f  ~. S u b s t i t u t i n g  (2 .13)  i n t o  (2 .10)  and e q u a t i n g  c o e f f i -  
c i e n t s  with identical powers of Y, we obtain for H i the equations dH• = 0 and find K l 
explicitly. We assume that initially the wave amplitude is quite small. For T = 0, then, 
the mean flow coincides with the primary one and Hi(T) ~ 0. The absence of a limiting tran- 
sition to a stationary CL is explained by the fact that for dB(~ § 0 the edge of the step 

n 

on the profile <~> ~- U~Y is "misplaced" for bounded Y. 

According to (2.10), even in case of a sinusoidal wave (B (~ = 0 for n = 2, 3 .... ) the 
n 
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harmonic amplitudes of the vorticity I!]nl in a nonlinear CL are quantities of the same order 
of magnitude. In this case it follows from (2.11a) that to match the outer and inner expan- 
sions in the principal part of (2.1) one must, in the general case, include harmonics with 
n~2. 

In the theory of hydrodynamic instability it is common to reduce the circulation feature 
in the Rayleigh equation to a logarithmic phase jump occurring inch. Using (2.1)~ (2.11a), 
we obtain for harmonics with n = 1 

' e  t = ~ Im ~ d Y  , ( 2 . 1 4 )  
e L I _ ~  

where ~ is the logarithmic phase decrement upon passing from Yc -- 0 to Yc + 0. 

3. Long-Wave Perturbations. Account of a Viscous Sublayer. We consider a wave with a 
symmetric profile ~n and construct a solution on the channel halfwidth 0 < y < I. The 
boundary-value problem is significantly simplified when the resonance point is near the bound- 
ary (Ye <<I). We show that in this case the wave is almost sinusoidal in the outer regions. 
We neglect fluid adhesion to the channel walls. It is natural to assume that Eq. (2.10) and 
the matching conditions (2.11a), (2.12) are satisfied if the CL is isolated from the boundary 

v I! 

(dc/y c <<I). Using explicit forms of ~ and ~b, one can verify that for U c ~ U c ~ 1 the co- 

efficients AS ~ and B(~ differ strongly in magnitude: IB!~ ~ Yc <<I. In the cen- 
1 

tral CL zone we put, accordlng to (1.4), 161[ ~ sIB!~ �9 The following estimate is ob- 
gained in this case 

S QldY ~'~ Bi~ ( 3 . 1 )  
- - c r  

As a result we reach the relation 

IAI+ - -  AI-I  << iAL+J, [B~+ - -  B~-I << IBL~I, ( 3 . 2 )  

where At+ = eA(:); BI+ = ~B} ~ + s3/2B(I) From the physical point of view, inequalities 
-- _ -- i •  " 

(3.2) correspond to a small contribution of resonances with a vortex wave to the velocity 
fluctuations in the outer regions. In this case the CL role as a source of multiple har- 
monics is clear. The multiple harmonics are small when they are induced flow waves (c is not 
an eigenvalue of the boundary-value problem with wave number n~). Indeed, putting in the 
induced solution IAn_+I a~ [An+- An_I ' we obtain an estimate of the contribution of multiple 

harmonics to (2.1): IAn_+I ~ ]BIll << IAI_+I, IBn_+i ~ ycIAn+I<< [BI• for n~2. 

The condition of nearness of resonance points to the channel wall in a planar Poiseuille 
flow is satisfied for long waves (2 << l). We first find the neutral linear waves in an ideal 
flow, for which the circulation feature usually has the form A~+ = A~_, B~+ = BI- (this rule 
is equivalent to the circulation feature in the Rayleigh equation in the principal value 
sense). The boundary conditions are written in the form ~(0) = ~'~(I) = 0. Using the matched 
expansion method, one can find the phase velocity of the wave c and the amplitude profile of 
the stream function f(y): 

1 

c = U-'-~o UZdy; ( 3 . 3 a )  

lka,~a (~, c; y) + k~% (o~, c; y), o < y < t ,  

l(y) = / u  (y)+o(c~ D, cc~<<y~<t, (3.3b) 

w h e r e  ka~U'o; kb,~,c; U 0 = U ' ( 0 ) ~ U s  The c o n d i t i o n  o f  n e a r n e s s  o f  r e s o n a n c e  p o i n t s  t o  
t h e  b o u n d a r y  and t h e  r e s t r i c t i o n  on t h e  CL s c a l e  a c q u i r e  t h e  fo rm 

t t yc~c/Uo"'a~<<t, Uodc/c<<l. ( 3 . 4 )  

Another special region is generated in a viscous flow near the walls, the viscous sublayer 
(VS) [I]. Far from the boundary the neutral wave can be primarily described by the Rayleigh 
equation if one uses the boundary condition [5] 

% : - (~ + ~) • l~=o, ( 3 . 5 )  
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where x = (v/2ac) ~/= is the scale of a linear VS. A weak nonstationarity of waves leads to 
a small correction to (3.5). The treatment of CL provided above remains valid if the CL and 
VS regions are isolated: 

•  (3 .6 )  

4. Wave I n t e r a c t i o n  w i t h  a C r i t i c a l  Layer  and w i t h  a Viscous  S u b l a y e r .  Taking i n t o  
a c c o u n t  the  weak e f f e c t  o f  CL and VS on the  wave s t r u c t u r e  i n  t-h-e o u t e r  r e g i o n s ,  t he  n o n s t a -  
t i o n a r y  s o l u t i o n  (1 .3 )  i s  r e p r e s e n t e d  f o r  Inl >>dc in  the  form 

= (l/2)~(y)e ~a~ + complex coNugate + w, (4.1) 

where w i s  a smal l  c o r r e c t i o n  and a ( t )  i s  t he  s l o w l y  v a r y i n g  complex wave a m p l i t u d e  

la-lda/dtl = ?c<<~c.  (4.2) 

S u b s t i t u t i n g  (4 .1 )  i n t o  (1 .3 )  and n e g l e c t i n g  n o n l i n e a r  and v i s c o u s  t e rms ,  we o b t a i n  f o r  w~ = 
<w exP (--i~$)> the  e q u a t i o n  

o~wl ( U" ~ 1 da U"f 
Oy" " la~ i-U-'i----c) w i - -  2 dt ie(U__c)~" (4.3) 

The solution of (4.3) is represented in th~ form w~ = A~a+B$~b@ w, where IA$1<<ka]al, 
[B$[<<kbIa[, w, and w is a particular solution of (4.3). The function ~ is constructed in 
the same manner as the singular part of the solution of (2.4). Then A~+ = (I/2)ak~ + A~, 

B~• = (1/2)~k b + ~, and the circulation rule in (4.3) acquires the form 

A$--A$=--e S ~ d Y ,  B$--B$-- e3/e o S (4.4) 

From the  symmetry o f  the  p r o f i l e  ~ ( y )  and from (3 .5 )  f o l l o w  the  boundary  c o n d i t i o n s  

w' = 01~=1, w = --(t/2)(i + l)• (4 .5 )  

The resulting homogeneous boundary-value problem (4.3)-(4.5) has nontrivial solutions of the 
form (3.3). To derive orthogonality relations we multiply (4.3) by f(y) and integrate over 
the region 0 < y < Yc -- ~, Yc+6 <y < l, where 6 is an infinitely small positive quantity. 
Integrating by parts, taking into account (4.4),, and ~sin~ for the transformation of the con- 
tribution of w the constancy of the Wronskian ~a~b-- ~b~a=i, we obtain 

U; da _ _ k b ( A ~ _ _ A ; ) + k a ( B ~ _ _ B ~ )  - I a( i+t)•  (4.6) 
2i~ dt ~ 

In  d e r i v i n g  (4 .6 )  we took  i n t o  a c c o u n t  the  r e l a t i o n  

lim~0 d y -  g;25j ~ - -  U0, 

where the  r e g i o n  Yc -- 6 < y < Yc + 6 was exc luded  from the  i n t e g r a l .  C o n d i t i o n s  ( 4 . 2 ) ,  (3 .1 )  
+ make i t  p o s s i b l e  to  n e g l e c t  t he  c o n t r i b u t i o n  of  B w -- B~ in  ( 4 . 6 ) .  As a r e s u l t ,  we o b t a i n  the  

following equation for the complex wave amplitude 

Transforming in (2.10), 
finally obtain 

, 2iac i d--! = ( t -  i ) a •  ~ e Q l d Y .  ( 4 . 7 )  
dt Uo -oo 

t 

From Eqs. ( 4 . 7 ) ,  (2 .10)  one can e l i m i n a t e  the  c o n s t a n t  f r e q u e n c y  c o r r e c t i o n  A~ = 'a•  
generated by the viscous wave interaction with the channel walls. For this it is sufficient 
to transform to new variables 

aN = a exp (iAcot), ~N -~ ~ -- (A(o/a) t, ~IN = ~1 -- Ao!aUr 

(4.7) to nonnormalized variables, and omitting the subscript N, we 

dA/dt = (?v + (I/~)TL q))A; 

0-7 ~ ~' ~ ,q -~ -- a B  sin a~ -~--, 

(4.8) 

(4.9) 
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~cu~ 
where A : lal is the wave amplitude, 7L=--~--~c.2; 7v=U~(v~I2c)I/2; the fluctuating amplitude 

of the stream function in the CL is B = cA, ~ is the deviation of the vorticity from its value 
in the primary flow at level U = c + (Am/a), and 

�9 - -  2U; i ( ~ s i n ~ > d B  U~B - ~  

i s  t h e  l o g a r i t h m i c  p h a s e  jump ( 2 . 1 4 ) ,  e x p r e s s e d  i n  t e r m s  o f  t h e  v a r i a b l e s  ~ and A. I n  ( 4 . 8 )  
we u s e  t h e  s o l u t i o n  ( 4 . 9 )  w i t h  a s y m p t o t i c s  a t  q / d  c § • s i m i l a r  to  ( 2 . 1 3 ) .  I n  d e r i v i n g  ( 4 . 8 ) ,  
(4.9) we took into account the symmetry relation ~(~, ~, t) = --~(--~, --~, t), due to which the 
wave phase is constant (without loss of generality, we took arg a N = 0). 

According to (4.8) the wave increment y = A-~dA/dt consists of two parts. The first of 
them (YV) is determined by the viscous wave interaction with the channel walls and is positive, 
and the second is proportional to the logarithmic phase jump, inducing a vorticity in the CL 
region. The applicability conditions of the equations obtained reduces to inequalities (3.4), 
(3.6), and (4.2). As follows from (3.6), for fixed ~= << I the viscosity must be quite small 
(~ ~ 2~cS/U~2 ~ 7). The latter is in agreement with the well-known conclusion of the linear 
theory that near the asymptotes of the lower branches of the neutral curve (~ ~ aT) the CL 
and VS form one viscous region [II]. 

5. Wave-Particle Interaction. Energy Relations. For ~ = 0 the system (4.8), (4.9) 
practically coincides with the equations describing nonlinear Landau damping of electrostatic 
waves in a plasma [12-15]. In this case the vorticity profile in a CL plays the role of a 
plasma velocity distribution function of resonance particles. 

The plasma-hydrodynamic analogy makes it possible to construct energy relations for long 
waves in a channel in the spirit of the general wave theory. According to [16] the energy of 
a plasma wave is determined without taking into account resonance particles. We correspond- 
ingly call the energy of hydrodynamic wave the flow energy increment in the external (with 
respect to CL and VS)regions, generated by exciting a given wave. Since ~ = <~t>-- U<< U, 
one can write the normalized energy density in the form 

I 

0 

w h e r e  ~_ = u - -  <@; v~ = v - -  @ ) ~ v  and  f r o m  t h e  i n t e g r a l  we e x c l u d e d  t h e  CL and  VS r e g i o n s ,  
whose  b o u n d a r i e s  a r e ,  r e s p e c t i v e l y ,  y = Yc • ~c (X ,  t )  and  y = ~ , ( x ,  t ) ,  t h e  m a t e r i a l  l i n e s ,  
w i t h  d c ~ f i ~ K K Y c ,  •  . We f i n d  an e x p l i c i t  f o rm  o f  H i n d i r e c t l y ,  by  means  o f  c o n s e r -  
v a t i o n  laws and Eq. (4.7). Integrating the energy balance equation in an ideal flow [17] 
over the outer region, we obtain 

o s  _ c <z~_~J_> J~+~'~ 4-c<u~v_>v=~, ~ (5 t 8--~-- ~!~e-6c ' " 

In deriving (5.1) we neglected the variation in U, v~, and the profile of fluctuating pres- 
sure across the CL, as well as the wave nonstationarity near the channel walls. As follows 
from (5.1), the incoming power in the wave is determined by the jumps in Reynolds stresses 
at the singular regions. The jump in u~ in crossing through the CL is found from (1.2), and 
the Reynolds stress at the VS boundary can be calculated by using (3.5); we then have 

,, (5.2 ~d c+6c 
< u _ v _ >  ~o-6c . . . .  .} 2Be(r  

i t ,  
<u~l : .  "h, :~* := - -  - ~  ~q.bo- ] a i ~. ( 5 . 3  

Comparison of (5. I)-(5.3) and the expression for dlaI2/dt, following from (4.7), makes it 
possible to write the wave energy in the form 

q 
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Fig. 1. 

The wave energy seems to be negative.* It was noted in [18] that waves in an ideal Poiseuille 
flow with a piecewise linear velocity profile possess a negative energy. The conclusion ob- 
tained by us justifies considering the flow model with a piecewise-linear velocity profile as 
an idealization of a real flow, corresponding to the transparent medium approximation [19] in 
terms of wave theory. The latter, however, is valid only for waves near the upper branch of 
the neutral curve. 

The energy determination given above makes it possible to interpret the wave behavior 
upon interaction with specialregions. According to (5.1), (5.3) the wave enhancement upon 
interaction with a VS is a wave instability with negative energy in a system with positive 
dissipation [~6]. To explain the CL role consider linear waves in an ideal fluid (~ = 0). 
We put ~ = --Ucq + ~~ in (4.9), and we linearize this equation in the oscillation amplitude. 
Solving then (4.8), (4.9) by the Laplace transform method (similarly to [6]), it can be shown 
that for t + ~ the logarithmic phase jump is ~ +--~, and A ~ exp (--~Lt). Thus, YL in (4.8) 
is the Landau damping decrement. 

The wave is damped for U~ < 0 and is amplified for U~ > 0. As noted in [9], for U~ < 0 
near resonance points there occurs in the unperturbed flow an inversion of the velocity dis- 
tribution of fluid particles, leading to negative dissipation of the wave energy; a wave with 
negative energy must damp (YL > O) under these conditions. When U c > 0 the dissipation is 
positive and an instability develops. 

To analyze nonlinear damping (amplification) of a wave in an inviscid flow, we also use 
results of the theory of plasma waves. For purposes of comparison with plasma problems, it 
must be taken into account that for v = 0 Eq. (4.9) expresses the vortex conservation law b) 
fluid particles. The particle trajectories are found from the equations 

d~/ dt = U ~ ,  d~/ dt = acA sin a~. 

The current lines on the (~, q) plane form a "cat's eye." For A = const the particles per- 
form rotations near the "pupil" with frequency mtr = ~(cU~A) ~/a. When the vorticity pertur- 

fl 

bations in the CL region are initially small (~(0, ~, n) ~--Uc~) , according to the conclu- 
l! 

sions of plasma theory [14] the strong wave amplitude (mtr(t = 0)>>YL) decays for U c < 0, as 
,l 

shown on Fig. ]a. The stabilization of the weak wave instability (mtr(t = 0)<< YL) for U c > 
0 is illustrated in Fig. lb. An estimate for the maximum amplitude can be obtained from the 
condition YL ~ ~tr- Material lines, having at t = 0 the form of straight lines u = C, trans- 
form after confining the instability to strongly twisted spirals (Fig. lc),# being also 
llnes of vorticity levels (~ = --UcC). 

6. Neutral Curve of the Linear The0rY. The study of instability in the ideal fluid 
approximation is of interest for explaining the possible behavior of the system. In a real 
Poiseuille flow, however, viscosity plays an essential role. We show that Eqs. (4.8), (4.9) 
lead to the well-known expression for the asymptote of the upper branch of the neutral curve. 

For d n <<d~ stationary waves in the reference system with profile ~ will be sought in 
the form of an expansion in the wave amplitude: 

~= U ~ ~ ~ _ ~ +  + ~ 2 ) +  + . . .  ( 6 .1 )  

In the first approximation we obtain from (4.9) the well-known expression in the linear vis- 
cous CL theory for the amplitude of the vorticity profile: 

*Waves with negative energy were first considered in hydrodynamics in [20]. 
PA similar pattern was obtained in [4] for a shear layer and in [6] for weather waves. 
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(6.2) 

where Yo = ~/dT. After transforming to the Fourier representation in the variable Yo, Eq. 
(6.2) acquires the form 

dq 

w h e r e  6 ( q )  i s  t h e  d e l t a - f u n c t i o n .  

~ )e~qY~ o] U'~c B i 

t"c~ t 
The solution (6.3) is written in the form 

(6.3) 

i <R i" 6 ! - -  ~ i_.---z-- 6(q')exp[o'3/3--q3/3]dq' . .  
U cdl o~ 

T a k i n g  i n t o  a c c o u n t  f u r t h e r  t h e  r e l a t i o n  

,i ~L)dq =~ 2ndtG' (0), 
- - o o  

we o b t a i n ,  a s  i n  t h e  i n v i s e i d  p r o b l e m ,  ~ = - - , v ,  and  f o r  U c < 0 we h a v e  t h e  L i n  e q u a t i o n  f o r  
t h e  a s y m p t o t e  o f  t h e  u p p e r  b r a n c h  o f  t h e  n e u t r a l  c u r v e :  

,) 2rZC5 [ :u 2 

The phase velocity of the wave (3.3a) also coincides with that found by Lin. 

7. Quasistationary Approximation. Development of Instability in a Viscous Flow. For 
a constant wave amplitude diffusion-dissipation processes tend to stabilize the ~ distribu- 
tion in the CL region. Assuming stability of the stationary solutions of (4.9) and under 
conditions of their quite quick establishment in (4.9), one can neglect ~t and use results 
of studying stationary CL [2, 3] in solving the nonstationary problem. 

Putting in (4.9) 3/3t = 0 and transforming to the variables 

x --: ~:~, Y ,  = .~/d,,, ~ = ~-/u"~d,,, (7.1) 
we obtain an equation for the nonlinear stationary CL, investigated in [3]: 

where %c = (d~/dn) z After transforming to normalized time and amplitude 

Eq. (4.8) transforms to the form# 

where ~=--2., <~sinX>dY. is the logarithmic phase jump, written in the variables of (7.1),$ 

and ~ = ~YV/IYLI- To find # for s<< I one can use the perturbation procedure described in 
Sec. 6. Calculating ~(2) and ~(3), we obtain 

�9 = - - n + k s  ~ k = -  W 

tWe note that in [5] Zhigulev studies waves with a strongly nonlinear CL, whose growth is 
related with account of nonstationarity of the CL in the wave reference system. In the pres- 
ent approach solutions of this type can be obtained by neglecting the term ds/dz, in (7.2) 
and taking into account the change in ~ due to the contribution of ~t to (4.9). Unlike [5], 
the method of analysis adopted in the present work makes it possible to consider the forma- 
tion of a nonlinear CL in the wave. 

Using (2.9b), one can show that ~ coincides with that introduced in [3]. 
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where F(I/3) is the value of the Gamma-function. According to [3], ~ §  s -3/2 for s > >  1. 
Figure 2 shows the curve ~(si), constructed from the data of [3]. It can be shown that for 
arbitrary s values the function ~ is well approximated by the simple equation 

�9 = - - ~ l ( i  + (4kl3~)~) 3/4. 

The description of a nonlinear CL within condition (7.2) does not contradict the isolation 
condition of CL and VS regions in a wide range of amplitude variation, since for waves near 
the top branch of the neutral curve (9 ~ I) this condition acquires the form dn/yc 
~"/3s172<< 1. 

Consider the development of instability in a stationary viscous Poiseuille flow U = 1 -- 
(I -- y)2 In the region above the asymptote of the upper branch of the neutral curve, Eq. 
(7.2) has two equilibrium states in the linear theory (0 < B < ~). One of them is stable 
and corresponds to an unperturbed flow, and the other describes stationary waves of finite 
amplitude, as constructed in [3]. These waves are unstable to small amplitude perturbations. 
When 6 > ~, the unperturbed flow is unstable within the linear approximation. An increment 
at the initial stage of instability increases at any 6 with amplitude and tends to a constant 
value for s § ~, which is explained by the weakened stabilization action of the CL. If the 
infinitely small perturbations increase (B > ~) and the instability is initially linear 
(ksi(O) << B -- ~), one obtains the following expression for the transition time to amplitudes 
s>>l 

I +-' I T,,~, l--~ - - + l n s ( O )  r + t l n s + C ( r )  , ( 7 .3 )  

where r = (~/~) -- 1 is the supercriticality of the wave, and the function C(r) is shown in 
Fig. 3. In the case of a "purely explosive" instability (r = 0) one obtains the following 
expression for ~, at s(O) << 1 and s >> I: 

T, ~ (I/n) [0.98/s ~ (0) -- i. 16 In s (0) q- In s + 0.17]. (7.4) 

Equation (7.2) is, strictly speaking, valid only for dn<<yc. However, the behavior of the 
solutions found shows that the amplitude growth must lead to a merging of the CL central zone 
with the VS region if the increment B is to remain constant. The merging takes place at A 
e/U~ during a time which can be estimated from Eqs. (7.3), (7.4). 

We discuss briefly the applicability limits of the quasistationary approximation for the 
CL region. We assume that v ~ a 11, the CL is nonlinear (s ~I), and, correspondingly, y 
YV ~ ~" Denoting by k I (~ = 1 -- 4) the terms in Eq. (4.9) ordered from left to right, we 
obtain the estimate 

kz/k3,~,..,~21Ss-1/~, k # ~ N ~ l S s .  (7 .5 )  

For s ~ I the contribution of ~t to (4.9) is asymptotically small. In a strongly nonlinear 
CL (s>> I) small scales in comparison with d n are generated on the vorticity profile [2], 
and the estimate (7.5) needs to be refined. 

We discuss now nonlinear effects in the VS, leading to breakdown of (3.5) and a change 
in YV. Assuming the profile deformation of the mean flow to be uniform along x, we obtain 
for K the equation 

o~ o ~  o ( 7 . 6 )  
----~-~0t 0u =--97 <u~v>" 

The condition tdY ~ ~-~ >> 1 (t d = (Ay)2/v is the diffusion time for scale Ay) is satisfied in 
the region separating the CL and VS, of transverse size aa. Neglecting then in (7~ the 
diffusion terms and solving (4.3), one can find u in explicit form 
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i f2U" 
4 (U-L--e)z A% (7 .7)  

This exp ress ion  is  ob ta ined  f o r  u i n  the reg ion  con f ined  between the CL and the m id - reg ion  
of the channel. Near the walls the characteristic scale is z ~ ~4 and, consequently, tdY 
2 << ]. In this case the operator in the left-hand side of (7.6) can be assumed to be the 

diffusion one~ and, putting according to (43.5) @I ~zA, one obtains the estimate u ~ AZ/a 2. 
The transition to the value u ~ A 2, determined by (7.7) in the outer region, occurs on the 
interval Ay ~ ~3>>z, where the viscosity and nonstationarity are equally important in (7.6). 
The derivation of the boundary condition (3.5) is based on using in the VS the simplified 
equation for the amplitude profile 

d%~/dg 4 + (iae/'v)d2~Jdy 2 = O. ( 7 . 8 )  

It can be shown that the contribution of nonlinear terms with u # 0 to (7.8) cannot be 
assumed small for A ~ 2, i.e., when the CL coincides with the VS. 

Similarly to the way the profile of u was treated above near the walls, one can proceed 
to develop the profile of the mean vorticity in the CL. The inequality yt d ~ 2/~ <<I is 
satisfied in the kernel of the nonlinear CL, and the process is quasistationary. In this 
case the step of [3] is generated on the mean vorticity profile. In the outer regions yt d >> 
] and the development of <~> is determined by the "inviscid" equations. For the size of the 
"avalanche" region of the step edges Ay the condition td ~ y results in the estimate Ay ~ ~ 
Since AY/dn >>I , % can be calculated from the stationary theory. 

The conclusions obtained in the present work for wave evolution in time can be applied 
to analyze spatial growth if the replacement t § X/Vg is made (Vg is the wave group velocity). 
For large Reynolds numbers the stationary profile in a Poiseuille flow usually does not get 
established, and the results obtained are valid under the assumption of quasiparallel flow 
during the nonlinear stage of instability evolution. 

The concept of a weak wave interaction with a critical layer and with a viscous sublayer 
can be used to treat instability in a boundary layer. From the point of view of general wave 
theory in nonequilibrium media it is interesting that the energy of a hydrodynamic wave, 
determined from the position of the plasma-hydrodynamic analogy, is negative, while the wave 
behavior is found to be in agreement with the sign of its energy. 
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STABILITY OF STATIONARY SPATIALLY PERIODIC CONVECTIVE 

MOTIONS IN A PLANE VERTICAL LAYER 

L. P~ Vozovoi and A. A. Nepomnyashchii UDC 532.516:536.25 

A wide range of studies has been dedicated to the stability of plane-parallel convective 
motions in viscous liquid layers (see [i, 2]). It is known that in those cases where instab- 
ility is of a monotonic character, it leads to development of stationary spatially periodic 
motions. Clever et al. [3, 4] studied stability of finite amplitude secondary motions. In 
[5-8] the stability of convective swell was considered, while [9] treated hexagonal cells 
which develop in horizontal layers due to an equilibrium crisis. In these studies stability 
was determined by solution of the spectral problem obtained by applying the Halerkin method 
to the linearized problem for perturbations. The present study will examine the stability 
of stationary spatially periodic motions in a planar vertical layer in the presence of lateral 
heating. The increments of the least stable perturbation will be determined from the time 
asymptote of the solution of the linearized perturbation problem, which will be constructed 
by the grid method [i0, ii]. Calculations are performed for Prandtl number by the grid method 
[I0, Ii]. Calculations are performed for Prandtl number Pr = 1 over the Grashof number range 
500 < Gr < 2000. The dependence of the increment on quasiwave number is obtained, the bounda- 
ries of the stability region are defined for spatially periodic secondary motions, and the 
main types of perturbations producing instability are determined. 

I. We will consider an infinite vertical layer filled by a viscous incompressible 
fluid. On the solid boundaries of the layer (y = • constant but different temperatures T = 
• maintained (the x axis is directed vertically upward, and the y axis is horizontal). 
In dimensionless form we write the system of equations for two-dimensional convection: 

0~/8t = A~ + OrST/Oy + D(@, ~)/D(x, y); (1 .1 )  

AW :~ --~; (1.2) 

8T/St = (I/Pr)AT + D(T, ~)/D(x, V), (1 .3 )  

where D( f ,  g ) / D ( x ,  y)  = ( a f / a x ) a g / a y  - ( a f / a y ) a g / a x ;  , ,  f low f u n c t i o n ;  q, v o r t i c i t y .  The 
similarity parameters are the Grashof number Gr and Prandtl number Pr. Assuming the flow to 
be closed (no pumping of liquid along the layer) the boundary conditions have the form 

== a~/Sy = 0, T =_+_1 a~ y = +1 .  (1 .4 )  

We also require that all functions remain finite at infinity 

Iml, I~1, ITt < oo as x - +  ++_ o o .  1 . 5 )  

Boundary p rob lem ( 1 . 1 ) - ( 1 . 5 )  a lways has a s o l u t i o n  
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